## 1-4 Videos Guide

1-4a

- Calculus of the natural logarithmic function

$$
\begin{aligned}
& \circ \frac{d}{d x}[\ln |x|]=\frac{1}{x}, \quad x \neq 0 \\
& \circ \int \frac{1}{x} d x=\ln |x|+C
\end{aligned}
$$

## Exercise:

- Show that $\int \tan x d x=\ln |\sec x|+C$.

1-4b
Exercises:

- Differentiate the function
- $f(x)=\ln \left(\sin ^{2} x\right)$
- $h(x)=\ln \left(x+\sqrt{x^{2}-1}\right)$
- $y=\ln (\csc x-\cot x)$

1-4c

## Exercises:

- Evaluate the integral.
- $\int_{0}^{3} \frac{d x}{5 x+1}$
- $\int \frac{\cos x}{2+\sin x} d x$

1-4d

- Calculus of logs and exponentials with bases other than $e$
- $\frac{d}{d x}\left(\log _{b} x\right)=\frac{1}{x \ln b}$
- $\frac{d}{d x}\left(b^{x}\right)=\ln b \cdot b^{x}$
- $\int b^{x} d x=\frac{b^{x}}{\ln b}+C$

1-4e
Definition: (Euler's number $e$ )

- $e=\lim _{x \rightarrow 0}(1+x)^{1 / x}$
- $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$

1-4f
Exercise:

- Use logarithmic differentiation to find the derivative of the function.

$$
y=\frac{e^{-x} \cos ^{2} x}{x^{2}+x+1}
$$

1-4g
Exercise:

- Use logarithmic differentiation to find the derivative of the function.
$y=x^{\cos x}$
- Process for logarithmic differentiation
- Take the natural log of both sides
- Use properties of logs
- Differentiate (usually with respect to $x$ ) -use implicit differentiation for $y$
- Give $\frac{d y}{d x}$ or $y^{\prime}$ in terms of $x$ (or whatever the independent variable is)
- Summary of techniques involving exponents
- (variable base) ${ }^{\text {constant exponent }}$-power rule (ex: $y=x^{2}$ )
- (constant base) variable exponent -rules for exponentials (ex: $y=e^{x}$ or $y=2^{x}$ )
- (variable base) ${ }^{\text {variable exponent }}$-logarithmic differentiation

